Clinical implications of the overshoot effect for treatment plan delivery and patient‐specific quality assurance for step‐and‐shoot IMRT

نویسندگان

  • John A. Baines
  • Sylwia J. Zawlodzka
  • Matthew L. Parfitt
  • Brigid E. Hickey
  • Andrew P. Pullar
چکیده

In this work, overshoot and undershoot effects associated with step-and-shoot IMRT (SSIMRT) delivery on a Varian Clinac 21iX are investigated, and their impact on patient-specific QA point dose measurements and treatment plan delivery are evaluated. Pinnacle3 SSIMRT plans consisting of 5, 10, and 15 identical 5 × 5 cm2 MLC defined segments and MU/segment values of 5 MU, 10 MU, and 20 MU were utilized and delivered at 600/300 MU/min. Independent of the number of segments the overshoot and undershoot at 600 MU/min were approximately ± 10%, ± 5%, and ± 2.5% for 5 MU/segment, 10 MU/segment, and 20 MU/segment, respectively. At 300 MU/min, each of these values is approximately halved. Interfractional variation of these effects (10 fractions), as well as dosimetric variations for intermediate segments, are reduced at the lower dose rate. QA point-dose measurements for a sample (n = 29) of head and neck SSIMRT beams were on average 2.9% (600 MU/min) and 1.7% (300 MU/min) higher than Pinnacle3 planned doses. In comparison for prostate beams (n = 46), measured point doses were 0.8% (600 MU/min) and 0.4% (300 MU/min) higher. The reduction in planned-measured point-dose discrepancies at 300 MU/min can be attributed in part to the inclusion of the first segment (overshoot) in the admixture of segments that deliver measured dose. Pinnacle3 plans for 10/9 head and neck/prostate treatments were adjusted by ± 0.5 MU to include the effects of overshoot and undershoot at 600 MU/min. Comparing original and adjusted plans for each site indicated that the original plan was preferred in 70% and 89% of head and neck and prostate cases, respectively. The disparity between planned and delivered treatment that this suggests can potentially be mitigated by treating SSIMRT at a dose rate below 600 MU/min.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of cylindrical ionization chambers for patient specific IMRT QA

Proven conventional dosimetry techniques do not provide accuracy and precision in the measurement of inverse planned intensity modulated radiation therapy (IMRT) fields. Dynamic and step-and-shoot multileaf collimation (DMLC/SMLC) challenge current ionization chamber dosimetry practices. Ionization chamber performance in these fields is evaluated for three cylindrical chambers of varying volume...

متن کامل

The step‐and‐shoot IMRT overshooting phenomenon: a novel method to mitigate patient overdosage

The goal of this work is to evaluate the dosimetric impact of an overshooting phenomenon in step-and-shoot IMRT delivery, and to demonstrate a novel method to mitigate the issue. Five pelvis IMRT patients treated on Varian 2100C EX linacs with larger than +4.5% phantom ion chamber point-dose difference relative to planned dose were investigated. For each patient plan, 5 fractions were delivered...

متن کامل

Fewer beams and segments result in a shorter delivery time and a better quality intensity-modulated radiotherapy plan in gastric cancer

Background: This study evaluated whether IMRT using fewer beams and segments could reduce delivery time without compromising plan quality in gastric cancer adjuvant radiotherapy. Materials and Methods: Fifteen patients with advanced gastric cancer who underwent D2, R0 surgery were included in this study. IMRT plans for each patient were designed as 7 equal beams with 40 segments, 5 beams with 2...

متن کامل

A Feasibility Study of IMRT of Lung Cancer Using Gafchromic EBT3 Film

Background: Intensity modulated radiation therapy (IMRT) is an advanced method for delivery of three dimensional therapies, which provides optimal dose distribution with giving multiple nonuniform fluency to the patient. The complex dose distribution of IMRT should be checked to ensure that the accurate dose is delivered. Today, film dosimetry is a powerful tool for radiotherapy treatment Quali...

متن کامل

Three-dimensional gel dosimetry for dose volume histogram verification in compensator-based IMRT

Background: Some tissues in human body are radiobiologically different from water and these inhomogeneity must be considered in dose calculation in order to achieve an accurate dose delivery. Dose verification in complex radiation therapy techniques, such as intensity‐modulated radiation therapy (IMRT) calls for volumetric, tissue equivalent and energy independent dosimeter. The purpose of this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016